Does the Market Understand Time Variation in the Equity Premium?

Mihir Gandhi
Chicago Booth

Niels J. Gormsen
Chicago Booth

Eben Lazarus
MIT Sloan

September 2022
Background

Well-studied set of questions:

▸ What is the expected excess return on the market?
▸ How does it evolve over time?
▸ Are there systematic errors in return predictions?
Background

Well-studied set of questions:

- What is the expected excess return on the market?
- How does it evolve over time?
- Are there systematic errors in return predictions?

\[p_t - d_t = \kappa - \sum_{j=0}^{\infty} \rho_j \mathbb{E}_t r_{t+j+1} + \sum_{j=0}^{\infty} \rho_j \mathbb{E}_t \Delta d_{t+j+1} \]

\[\mathbb{E}_t r_{t+1} + \sum_{j=1}^{\infty} \rho_j \mathbb{E}_t r_{t+j+1} \]

much more important for pricing!
Background

Well-studied set of questions:

- What is the expected excess return on the market?
- How does it evolve over time?
- Are there systematic errors in return predictions?

\[p_t - d_t = \kappa - \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1} + \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1} \]

Our focus:

- What is the expected future equity premium?
- How does it compare to the actual future equity premium \(\mathbb{E}_{t+j} r_{t+j+1} \)?
- Are there systematic errors in expected return predictions?
What We Do

1. Option-based measure of log equity premium:

 Spot rate: \(\mu_t^n = \mathbb{E}_t[r_{t,t+n}] - r_{t,t+n}^f \)

2. Calculate expected future equity premium:

 Forward rate: \(f_t^n = \mu_t^{(n+1)} - \mu_t^{(n)} = \mathbb{E}_t[\mu_{t+n}^{(1)}] \)

3. Compare forward rate to realized future spot rate:

 Forecast error: \(\varepsilon_{t+n} = \mu_{t+n}^{(1)} - f_t^n \)
Why This Framework?

Spot rate: \[\mu_t^{(n)} = \mathbb{E}_t[r_{t,t+n}] - r_{t,t+n}^{f} \]

Forward rate: \[f_t^{(n)} = \mu_t^{(n+1)} - \mu_t^{(n)} = \mathbb{E}_t[\mu_{t+n}^{(1)}] \]

Forecast error: \[\varepsilon_{t+n} = \mu_{t+n}^{(1)} - f_t^{(n)} \]

- Term structure of log equity premia \(\Rightarrow \) straightforward calculation of forward rates
- Behavior of term structure:
 - Key for prices
 - Great lab for testing whether market-based expectations are intertemporally consistent, \textit{without} needing to take a stand on whether expected returns are themselves rational
- Forecast errors require much weaker conditions than needed to estimate \(\mu_t^{(n)} \) and \(f_t^{(n,m)} \) separately
 - In general, spot and forward rates are contaminated by SDF-related covariances…
 - …but when differencing, the covariance terms largely cancel
What We Find

Spot rate: \[\mu_t^{(n)} = E_t[r_{t,t+n}] - r_{t,t+n}^f \]

Forward rate: \[f_t^{(n)} = \mu_t^{(n+1)} - \mu_t^{(n)} = E_t[\mu_t^{(1)}] \]

Forecast error: \[\epsilon_{t+n} = \mu_{t+n}^{(1)} - f_t^{(n)} \]

In global options sample:

1. Forward rates are strong predictors of realized spot rates
 - Forward rate \(\uparrow \) by 1% \(\implies \) future spot rate \(\uparrow \) by 0.7%
 - Forward rates explain 20% of the variation in future spot rates at 6-month horizon

2. Forecast errors are close to 0 on average...

3. ...but still exhibit predictable mean reversion and excess volatility
 - Can therefore reject fully rational expectations for range of possible SDF specifications
 - Alternatively, need highly volatile and countercyclical price of discount-rate risk
Illustration: U.S. Forward and Realized Spot Rates in Three Crises

1998 Russian Debt Crisis

2008 Financial Crisis

2020 COVID-19 Recession

- **Forward rate at crisis onset**
- **Realized one-month spot rate**
Roadmap

1. Introduction

2. Theory
 - The Log Utility Case
 - The General Case

3. Implementation and Results

4. Rationalizing Forecast Errors

5. A Model of Expectation Errors

6. Discussion and Conclusions
The Log Utility Case: Setup

Setting:

- Representative agent (“the market”)
 - Equivalently, any unconstrained investor who chooses to fully invest in the market
- For now: **Log utility** over wealth

\[
\log(W_{t+n}) = \log(W_t R_{t,t+n})
\]

\[
P_t = \mathbb{E}_t [M_{t,t+n} \text{Payoff}_{t+n}]
\]

\[
M_{t,t+n} = 1/R_{t,t+n}
\]

- Useful for exposition, but will turn out not to be central
The Log Utility Case: Setup

Setting:

- Representative agent (“the market”)
 - Equivalently, any unconstrained investor who chooses to fully invest in the market
- For now: Log utility over wealth $\iff M_{t,t+n} = 1/R_{t,t+n}$
- Building block: $\text{LVIX } l_t^{(n)}$ [Gao and Martin (2021)]:

$$
\mathbb{E}_t[r_{t,t+n}] - r_{t,t+n}^f = (R_{t,t+n}^f)^{-1}\mathbb{E}_t^*[R_{t,t+n}r_{t,t+n}] - r_{t,t+n}^f - \text{Cov}_t(M_{t,t+n}R_{t,t+n}, r_{t,t+n})
$$

- $l_t^{(n)}$: Observable from options (details later)
- Second term: $MR = 1 \implies \text{Cov} = 0$ under log utility
The Log Utility Case: Identification

General notation:

Spot rate: \(\mu_t^{(n)} = \mathbb{E}_t[r_{t,t+n}] - r_{t,t+n} \)
Forward rate: \(f_t^{(n,m)} = \mu_t^{(n+m)} - \mu_t^{(n)} = \mathbb{E}_t[\mu_{t+n}^{(m)}] \)
Forecast error: \(\varepsilon_{t+n}^{(m)} = \mu_{t+n} - f_t^{(n,m)} \)

Timeline:

\(\mu_t^{(n+m)} \)
\(\mu_t^{(n)} \)
\(f_t^{(n,m)} \)
\(t \quad t+n \quad t+n+m \)
The Log Utility Case: Identification

General notation:

Spot rate: \(\mu_t^{(n)} = \mathbb{E}_t[r_{t,t+n}] - r_{t,t+n}^f \)
Forward rate: \(f_t^{(n,m)} = \mu_t^{(n+m)} - \mu_t^{(n)} = \mathbb{E}_t[\mu_t^{(m)}] \)
Forecast error: \(\epsilon_{t+n}^{(m)} = \mu_t^{(m)} - f_t^{(n,m)} \)

Result 1

Given \(M_{t,t+n} = 1/R_{t,t+n} \):

\[
\begin{align*}
\mu_t^{(n)} &= \mathcal{L}_t^{(n)} \\
f_t^{(n,m)} &= \mathcal{L}_t^{(n+m)} - \mathcal{L}_t^{(n)} \\
\epsilon_{t+n}^{(m)} &= \mathcal{L}_{t+n}^{(m)} - \mathcal{L}_{t}^{(n+m)} + \mathcal{L}_t^{(n)}
\end{align*}
\]

- Can then examine term structure, test \(\mathbb{E}[\epsilon_{t+n}^{(m)}] = 0, \mathbb{E}[Z_t \epsilon_{t+n}^{(m)}] = 0, \ldots \)
The General Case: Identification Challenge

Beyond log utility?

- In general, spot and forward rates are contaminated by unobservable covariances:

\[
\mu_t^{(n)} = \mathcal{L}_t^{(n)} - \text{Cov}_t(M_{t,t+n}R_{t,t+n}, r_{t,t+n})
\]

\[
f_t^{(n,m)} = \mathcal{L}_t^{(n+m)} - \mathcal{L}_t^{(n)} + C_t^{(n)} - C_t^{(n+m)}
\]

- For \(\mu_t^{(n)}\), can argue \(C_t^{(n)} \leq 0\) [Gao & Martin (2021)]. . .but for \(f_t^{(n,m)}\), \(C_t^{(n+m)} \gg C_t^{(n)}\)

- Key insight: Covariance terms largely cancel when considering forecast errors \(\epsilon_{t+n}^{(m)} = \mu_{t+n} - f_t^{(n,m)}\).

E.g., for \(n = m = 1\):

\[
\mathbb{E}_t[C_{t+1}^{(1)}] + C_t^{(1)} - C_t^{(2)} = \text{Cov}_t(M_{t,t+1}R_{t,t+1}, \mathbb{E}_{t+1}[r_{t+1,t+2}])
\]

much less volatile than \(r_{t+1,t+2}\).
The General Case: Result

Define forecast-error proxy from log utility case:

\[\hat{\epsilon}_{t+n}^{(m)} = \mathcal{L}_{t+n}^{(m)} - \mathcal{L}_{t+n}^{(n+m)} + \mathcal{L}_{t}^{(n)} \]

Result 2

For any SDF \(M_{t,t+n} \),

\[\mathbb{E}_t[\hat{\epsilon}_{t+n}^{(m)}] = \mathbb{E}_t[\epsilon_{t+n}^{(m)}] - \text{Cov}_t(M_{t,t+n}R_{t,t+n}, \mu_{t+n}^{(m)}) \]

- Covariance term now relates to pricing of discount-rate risk, rather than realized-return risk
- Basic idea of proof: \(MR_{t,t+n} \) is orthogonal to unexpected component of \(r_{t+n,t+n+m} \), so left with expectation term \(\mu_{t+n}^{(m)} \)
- Remaining covariance is likely quite small, but can be disciplined empirically or theoretically
The General Case: Result

Define forecast-error proxy from log utility case:

\[
\tilde{e}_{t+n}^{(m)} = \mathcal{L}_{t+n}^{(m)} - \mathcal{L}_{t}^{(n+m)} + \mathcal{L}_{t}^{(n)}
\]

Result 2

For any SDF \(M_{t,t+n} \),

\[
\mathbb{E}_t[\tilde{e}_{t+n}^{(m)}] = \mathbb{E}_t[\varepsilon^{(m)}_{t+n}] - \text{Cov}_t \left(M_{t,t+n} R_{t,t+n}, \mu_{t+n}^{(m)} \right)
\]

Further, define forecast-revision proxy (change in forward rates):

\[
\tilde{\eta}_{t+1}^{(m)} = \left(\mathcal{L}_{t+1}^{(n+m-1)} - \mathcal{L}_{t}^{(n+m)} \right) - \left(\mathcal{L}_{t+1}^{(n-1)} - \mathcal{L}_{t}^{(n)} \right)
\]

Result 3

For any SDF \(M_{t,t+1} \),

\[
\mathbb{E}_t[\tilde{\eta}_{t+1}^{(m)}] = \mathbb{E}_t[\eta^{(m)}_{t+1}] - \text{Cov}_t \left(M_{t,t+1} R_{t,t+1}, f_{t+1}^{(n+m-1)} \right)
\]
Roadmap

1. Introduction

2. Theory

3. Implementation and Results
 - Data
 - Main Estimates
 - Forecast Errors and Predictability
 - Interpretation

4. Rationalizing Forecast Errors

5. A Model of Expectation Errors

6. Discussion and Conclusions
Data and Measurement

Data:
- Global panel of index options from OptionMetrics
 - For U.S. sample: 1990–2021
 - For international sample: Consider 10 major indices, with data since at least 2006
- Sample monthly and apply standard filters
- Baseline: 6-month horizon, 6 months forward \((n = m = 6)\)

Measuring LVIX: Following Gao & Martin (2021), Carr & Madan (2001),

\[
\mathcal{L}^{(n)}_t = \left(R^{f}_{t,t+n} \right)^{-1} \mathbb{E}^*_t \left[R_{t,t+n} r_{t,t+n} \right] - r^{f}_{t,t+n}
\]

\[
= \frac{1}{P_t} \left\{ \int_{0}^{F^{(n)}_t} \frac{\text{put}^{(n)}(K)}{K} dK + \int_{F^{(n)}_t}^{\infty} \frac{\text{call}^{(n)}(K)}{K} dK \right\}
\]

- Calculate integral a bunch of different ways (appendix has details)
- First: Simplify by working under log assumption, so LVIX \(\implies\) spot & forward rates
Estimates: Contemporaneous U.S. Spot and Forward Rates

Annualized Percent

Current Spot Rate

Forward Rate

1990 2000 2010 2020
Estimates: Realized U.S. Spot and Forward Rates

![Graph showing realized spot rates and forward rates over time with shaded areas indicating forecast errors.](image-url)
Do Forward Rates Predict Future Spot Rates?

Mincer–Zarnowitz Regressions for Spot Rates by Country

\[
\mu_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(6,6)} + \epsilon_{t+6}
\]

<table>
<thead>
<tr>
<th></th>
<th>(1) U.S.</th>
<th>(2) Ex-U.S.</th>
<th>(3) All</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_t^{(6,6)})</td>
<td>0.67***</td>
<td>0.55***</td>
<td>0.56***</td>
</tr>
<tr>
<td></td>
<td>(0.096)</td>
<td>(0.056)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.74***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country FEs</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>p-value: (\beta_1 = 1)</td>
<td>0.003</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Obs.</td>
<td>378</td>
<td>1,849</td>
<td>2,227</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.22</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>Within (R^2)</td>
<td>—</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

SEs in (1) are heteroskedasticity and autocorrelation-robust [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- Substantial predictive power...
- ...but \(\beta_1 \neq 1 \), suggesting forward rates overshoot future spot rates
- What if \(\beta_1 \) estimate is downwardly biased due to measurement error?
- To address this, now consider IV using shorter-term forward rate \(f_t^{(2,1)} \) as instrument for \(f_t^{(6,6)} \)
- Shorter-horizon forwards likely to be better measured: denser option strikes & more trading volume
Do Forward Rates Predict Future Spot Rates?

Instrumented Mincer–Zarnowitz Regressions for Spot Rates

\[\mu_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(6,6)} + \epsilon_{t+6}, \quad f_t^{(6,6)} = \pi_0 + \pi_1 f_t^{(2,1)} + \eta_t \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S.</td>
<td>Ex-U.S.</td>
<td>All</td>
</tr>
<tr>
<td>(f_t^{(6,6)})</td>
<td>0.73***</td>
<td>0.69***</td>
<td>0.70***</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.078)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.59***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Country FEs</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(p)-value: (\beta_1 = 1)</td>
<td>0.018</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Obs.</td>
<td>378</td>
<td>1,849</td>
<td>2,227</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.22</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td>Within (R^2)</td>
<td>-</td>
<td>0.13</td>
<td>0.14</td>
</tr>
</tbody>
</table>

SEs in (1) are heteroskedasticity and autocorrelation-robust [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- Forward rate ↑ by 1%

\[\Rightarrow \text{future spot rate ↑ by } \sim 0.7\% \]

- Forward rates explain \sim 20% of the variation in future spot rates

- Now soften log utility assumption and turn to forecast errors
Average Forecast Errors Are Close to Zero

\[\varepsilon_{t+6}^{(6)} = \mu_{t+6}^{(6)} - f_t^{(6,6)} \]

<table>
<thead>
<tr>
<th></th>
<th>(1) U.S.</th>
<th>(2) Ex-U.S.</th>
<th>(3) All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.021 (0.15)</td>
<td>0.20 (0.11)</td>
<td>0.17 (0.11)</td>
</tr>
<tr>
<td>Obs.</td>
<td>378</td>
<td>1,849</td>
<td>2,227</td>
</tr>
</tbody>
</table>

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- Not just statistically insignificant, but effectively zero: \(\bar{\varepsilon} \leq 20 \) bps annualized
- Therefore can’t reject log utility + RE just on the basis of average errors
 - Not the highest-powered test, but will be informative in trying to rationalize time variation
- But average of zero masks substantial predictability…
Forecast Errors and Lagged Forward Rates Over Time

Annualized Percent

Forecast Error

Lagged Forward Rate (Demeaned)
Forward Rates as Predictors of Forecast Errors

FORWARD RATES (IV)

PREDICTED FORECAST ERRORS

Annualized Percent
Predictable Forecast Errors

Regressions of Forecast Errors on 2×1 Forward Rate

\[\varepsilon_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(2,1)} + e_{t+6} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U.S.</td>
<td>Ex-U.S.</td>
<td>All</td>
</tr>
<tr>
<td>$f_t^{(2,1)}$</td>
<td>-0.17**</td>
<td>-0.16**</td>
<td>-0.16***</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.049)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.39*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country FEs</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Obs.</td>
<td>378</td>
<td>1,849</td>
<td>2,227</td>
</tr>
<tr>
<td>R^2</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Within R^2</td>
<td>—</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.
Predictable Forecast Errors

Regressions of Forecast Errors on 2×1 Forward Rate

\[
\varepsilon_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(2,1)} + \varepsilon_{t+6}
\]

<table>
<thead>
<tr>
<th></th>
<th>(1) U.S.</th>
<th>(2) Ex-U.S.</th>
<th>(3) All</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_t^{(2,1)})</td>
<td>-0.17**</td>
<td>-0.16**</td>
<td>-0.16***</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.049)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.39*</td>
<td>0.049</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.049)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Country FEs</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Obs.</td>
<td>378</td>
<td>1,849</td>
<td>2,227</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Within (R^2)</td>
<td>—</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- Forward rates again overshoot future spot rates
- Errors are also predictable in Coibion–Gorodnichenko regressions using forward-rate revisions (more shortly)
- And predictability rises substantially \((R^2 = 0.11)\) with kernel regression: Arises mostly from high forward rates
- Is this consistent with “overreaction”? It depends: Overreaction to what?
- Option-based expected returns: Yes \([\text{Spot rates, fwd rates, fwd-rate revisions}]\)
- Past returns: Wrong direction!
Reminder: Forecast Errors and Lagged Forward Rates

- Russian Financial Crisis
- Stock Market Downturn of 2002
- Global Financial Crisis
- Double-Dip Recession Fears
- Debt-Ceiling Crisis
- Covid-19 Recession

Annualized Percent

1990 2000 2010 2020

Forecast Error
Lagged Forward Rate (Demeaned)
How Significant Are Forecast Errors?

Before taking any stand on source of estimated forecast errors [*expectation errors vs. risk premia*], return to question posed at outset: **How significant are they for price variation?**

\[
pt - dt = \kappa - \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1} + \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1}
\]
How Significant Are Forecast Errors?

Before taking any stand on source of estimated forecast errors [expectation errors vs. risk premia], return to question posed at outset: **How significant are they for price variation?**

\[p_t - d_t = \kappa - \mathbb{E}_t r_{t+1} - \sum_{j=1}^{\infty} \rho^j f_t^{(j,1)} - \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1} \]

Break \(f_t^{(j,1)} \) into:

\(f_t^{(j,1)} = \mathbb{E}_t[\mu_{t+j}^{(1)}] + \mathbb{E}_t[\varepsilon_{t+j}^{(1)}] \)

\(\Rightarrow \) expected spot rates + predictable forecast errors

- Set one period to be 3 months, and predict \(f_t^{(1)} \) for \(j = 2, 3 \) (6 & 9 months ahead) using 2m×1m forward

- Assume errors follow \(\mathbb{E}_t[\varepsilon_{t+j+1}^{(1)}] = \phi^j \mathbb{E}_t[\varepsilon_{t+j}^{(1)}] \) [De la O & Myers (2021)] \(\Rightarrow \) \(\phi \approx 1 \)

- Use this to calculate discounted sum of predicted forecast errors’ maximal possible effect on prices

- Compare to repurchase-adj. \(p_t - d_t \) from Nagel & Xu (2022)
Discounted Forecast Errors and Price-Dividend Variation

Meaningful in magnitude, esp. during crisis, and overall accounts for 8% of $p_t - d_t$ variation
Roadmap

1. Introduction

2. Theory

3. Implementation and Results

4. Rationalizing Forecast Errors

5. A Model of Expectation Errors

6. Discussion and Conclusions
Can Forecast Errors Be Rationalized?

\[
\mathbb{E}_t[\varepsilon_{t+n}^{(m)}] = \mathbb{E}_t[\varepsilon_{t+n}^{(m)}] - \text{Cov}_t(M_{t,t+n}R_{t,t+n}, \mu_{t+n}^{(m)})
\]

What conditions do we need on \(\zeta_t \) in order for expectation errors \(\mathbb{E}_t[\varepsilon_{t+n}^{(m)}] \) to be unpredictable? Must have \(-\zeta_t \) take same sign as pred. forecast errors:

Main challenge: Small on average, but must flip signs dramatically (− in good times, + in bad).
Can Forecast Errors Be Rationalized?

$$\mathbb{E}_t[\hat{e}_{t+n}^{(m)}] = \mathbb{E}_t[e_{t+n}^{(m)}] - \text{Cov}_t\left(M_{t,t+n}R_{t,t+n}, \mu_{t+n}^{(m)}\right)$$

What conditions do we need on ζ_t in order for **expectation errors** $\mathbb{E}_t[e_{t+n}^{(m)}]$ to be unpredictable?

- For simplicity: Take $n = m = 1$, and assume $M_{t+1}, R_{t+1}, \mu_{t+1}$ jointly log-normal
- Then $\zeta_t > 0$ (as needed in bad times) if and only if:

$$SR_t(-\mu_{t+1}) > -\rho_t(r, \mu)\sigma_t(r),$$

where SR_t is Sharpe ratio on claim to next period’s negative equity premium (low payoff is bad)

- Correlation $\rho_t(r, \mu)$ likely to be negative; for illustration, set it to -1
- Then SR_t must vary *more than* $\sigma_t(r)$ for ζ_t to flip signs
- One calibration: Go back to log utility (likely to be conservative for time variation in σ_t), and estimate $\sigma_t(r)$ from options
Can Forecast Errors Be Rationalized?

$\mathbb{E}_t[\varepsilon_{t+n}^{(m)}] = \mathbb{E}_t[\varepsilon_{t+n}] - \text{Cov}_t(M_{t,t+n}R_{t,t+n}, \mu_{t+n}^{(m)})$

What conditions do we need on ζ_t in order for expectation errors $\mathbb{E}_t[\varepsilon_{t+n}^{(m)}]$ to be unpredictable?

- SR_t must vary more than $\sigma_t(r)$ for ζ_t to flip signs
- One calibration: Go back to conservative log utility case, and estimate $\sigma_t(r)$ from options. Results for conditional volatility of 6-month market return:
Can Forecast Errors Be Rationalized?

\[
\mathbb{E}_t[\hat{\epsilon}_{t+n}^{(m)}] = \mathbb{E}_t[\epsilon_{t+n}^{(m)}] - \text{Cov}_t\left(M_{t,t+n}R_{t,t+n}, \mu_{t+n}^{(m)} \right) \\
\xi_t
\]

What conditions do we need on \(\xi_t \) in order for expectation errors \(\mathbb{E}_t[\epsilon_{t+n}^{(m)}] \) to be unpredictable?

- \(SR_t \) must vary more than \(\sigma_t(r) \) for \(\xi_t \) to flip signs
- One calibration: Go back to conservative log utility case, and estimate \(\sigma_t(r) \) from options
- More generally, difficult to get both average errors (small) and time variation (large) right
- Paper has one illustration varying risk aversion \(\gamma \)
Roadmap

1. Introduction
2. Theory
3. Implementation and Results
4. Rationalizing Forecast Errors
5. A Model of Expectation Errors
6. Discussion and Conclusions
Model Setup

▶ Now want a simple lab to examine whether findings could plausibly arise from combo of:

1. Log utility
2. Expectation errors

⇒ consider a version of framework in Bordalo, Gennaioli, Shleifer (2018), Augenblick & Rabin (2021)

▶ 3-month spot rate dynamics under objective measure:

\[
\mu_t^{(3)} = \left(1 - \sum_{j=1}^{3} \phi_j \right) \bar{\mu} + \phi_1 \mu_{t-1}^{(3)} + \phi_2 \mu_{t-2}^{(3)} + \phi_3 \mu_{t-3}^{(3)} + \epsilon_t, \quad \epsilon_t \text{i.i.d.} \sim \mathcal{N}(0, \sigma^2_{\epsilon})
\]

▶ Under RE: Term structure of current spot rates would be based on objective expectations \(\mathbb{E}_t \left[\mu_{t+n}^{(3)} \right] \)

▶ Actual subjective expectations: Excess sensitivity to news governed by “diagnosticity” parameter \(\theta \):

\[
\mathbb{E}_t^{\theta} \left[\mu_{t+n}^{(3)} \right] = \mathbb{E}_t \left[\mu_{t+n}^{(3)} \right] + \theta \left(\mathbb{E}_t \left[\mu_{t+n}^{(3)} \right] - \mathbb{E}_{t-3} \left[\mu_{t+n}^{(3)} \right] \right)_{\text{news } \propto \epsilon_t}
\]
Model Setup

\[
\mu_t^{(3)} = \left(1 - \sum_{j=1}^{3} \phi_j\right) \bar{\mu} + \phi_1 \mu_{t-1}^{(3)} + \phi_2 \mu_{t-2}^{(3)} + \phi_3 \mu_{t-3}^{(3)} + \epsilon_t, \quad \epsilon_t \sim \text{i.i.d. } \mathcal{N}(0, \sigma_{\epsilon}^2)
\]

\[
\mathbb{E}_t^{\theta} \left[\mu_{t+n}^{(3)} \right] = \mathbb{E}_t \left[\mu_{t+n}^{(3)} \right] + \theta \left(\mathbb{E}_t \left[\mu_{t+n}^{(3)} \right] - \mathbb{E}_{t-3} \left[\mu_{t+n}^{(3)} \right] \right)
\]

- Forward rates based on subjective expectations
- Longer-term spot rates embed objective short rate and subjective expectations of future short rates
- Consider a range of values for \(\theta\)
 - \(\theta = 0\): RE
 - \(\theta = 0.91\): BGS (2018)
- Estimate objective parameters for spot-rate process in each country
- For each \(\theta\), simulate 10,000 samples and run same tests as in the data for \(n, m = 6\) months
Model vs. Data: Main Estimates

Mincer–Zarnowitz Regressions

Predictability of Forecast Errors

Average Forecast Errors

Coibion–Gorodnichenko Regressions

Slope β_1

Sensitivity Parameter θ

Slope β_1

Sensitivity Parameter θ

Model & 95% & Data

RE: $\theta = 0$ & BGS: $\theta = 0.91$
Model vs. Data: R^2 Values

Simple calibration does reasonably well on main estimates…
…but seems to miss some rational variation in forward rates:

Legend

- Model
- 95% Confidence Band
- Data
- RE: $\theta = 0$
- BGS: $\theta = 0.91$
A Trilemma for Expectation Errors

More generally:

- While simple calibrated model does reasonably well at matching the data, again not an unqualified success for all possible notions of overreaction

- Subjective beliefs overreact to increases in *spot rates* in our model, not past returns, and cyclicity matters:

 \[p_t - d_t = \kappa - \sum_{j=0}^{\infty} \rho^j E_t r_{t+j+1} \| E_t r_{t+1} - \sum_{j=1}^{\infty} \rho^j f_t^{(j,1)} + \sum_{j=0}^{\infty} \rho^j E_t \Delta d_{t+j+1} - RF_t \]

- Use \(\sim \) to denote *expectation error wedge* (deviation from RE economy):

 \[\text{var}(\sim p_t - \sim d_t) = \text{var}(\sim F_t) + \text{var}(\sim CF_t) - 2 \text{cov}(\sim F_t, \sim CF_t) \]

- Have to choose between **two of three**:
 1. Volatile expectation errors for cash flows and/or returns
 2. Volatile price-dividend ratio relative to RE
 3. Positive comovement between fundamental and return expectation errors
Roadmap

1. Introduction

2. Theory

3. Implementation and Results

4. Rationalizing Forecast Errors

5. A Model of Expectation Errors

6. Discussion and Conclusions
Final Notes

Summary:
- Introduce new methodology to test whether the market understands time variation in equity premium
- Find evidence that it does...to an extent

Tie-ins:
- Equity and fixed-income term structure
- Our tests are similar to tests of the expectations hypothesis, but with less room for discount-rate variation than in previous versions
- Similar to past work [van Binsbergen & Koijen (2017), Gormsen (2021)], find more predictability in equity term structure than in FI term structure
- Also build on Giglio & Kelly (2018) work on other term structures

Still to do: Additional tests, more work on potential rational discount-rate variation, ...