Model-Free International Stochastic Discount Factors

Mirela Sandulescu Fabio Trojani Andrea Vedolin

Discussion:
Eben Lazarus

MFA Annual Meeting
March 2019
Background

Exchange-rate puzzles:

1. Forward premium puzzle

2. With complete markets, exchange rates are “too smooth” unless we think risk-sharing is nearly perfect [Brandt, Cochrane, Santa-Clara (2006)]
 - For any foreign (non-US) asset with return $R_{f,i}$,
 \[E[M_f R_{f,i}] = 1 \]
 \[E[M_d X R_{f,i}] = 1, \]
 - where $X \equiv S_{t+1}/S_t$ is exchange-rate change (\uparrow means foreign appreciates relative to US), M_d is US-investor SDF
 - With unique SDFs, $X = M_f / M_d$, so $\text{Var}(x) = \text{Var}(m_f - m_d)$
 - We know $\text{Var}(m_f), \text{Var}(m_d)$ are very high (equity premium + forward premium \iff high Sharpe ratios available), so they must covary strongly given exchange-rate volatility of 15%/year

3. Cyclicality puzzle [Backus, Smith (1993)]
 - Exchange rates don’t comove empirically with proxies for relative macro conditions, even though (from above) $\text{Cov}(x, m_f - m_d) / \text{Var}(x) = 1$
Background

Standard approach to rationalize puzzles:

- Assume the existence of some “dark matter”

- For example, highly correlated long-run risks imply large Sharpe ratios, smooth exchange rates, and exchange rate comovement with hard-to-measure expectations of long-run consumption growth

This paper’s approach:

- Step back from strict parameterizations of preferences and fundamentals

- Instead, consider what we learn by semiparametrically characterizing certain SDFs under different assumptions about market segmentation
What I’ll do

Interesting and important set of questions

Discussion: Review step by step, with short comments/questions as I go

1. Theory
2. Empirical implementation
3. Results
Outline

1. Theory

2. Empirical Implementation

3. Results
Theoretical Setting

Work under null of:

1. Incomplete markets
 - Non-unique SDFs, so get an additional degree of freedom ("wedge") in matching exchange-rate returns [Backus, Foresi, Telmer (2001)]
 \[x = m_f - m_d + \eta \]
 - Wedge isn’t unrestricted (e.g., orthogonal to asset returns)

2. Integrated markets:
 \[\text{Span(domestic returns)} = \text{Span(foreign returns} \times \text{exchange-rate change}) \]
 - But I thought we wanted to know what happens when markets are segmented?
 - Response: By characterizing set of SDF processes under integrated markets, can hope to draw (contrapositive) conclusions about necessity of segmented markets if those processes are “unreasonable”
Theoretical Setting

Toolkit:

1. Solve for minimum-dispersion SDFs
 - This problem is a bit convoluted — \(\min_M \log \mathbb{E}[M^\alpha] / (\alpha(\alpha - 1)) \). subject to pricing equation
 - But in practice, the authors consider just two such solutions: (i) minimum entropy (\(\alpha = 0 \)), and (ii) minimum variance (\(\alpha = 2 \))
 - Proposition 1 gives “cookbook” for doing so given observed returns & \(\alpha \)
 - Important: Minimum-variance SDF is the unique SDF in return space \(\iff \) gives projection of “true” SDF onto return space
 - Why? \(\mathbb{E}[MR] = 1 \iff \mathbb{E}[(M + \epsilon)R] = 1 \) if \(\mathbb{E}[\epsilon R] = 0 \), so \(\epsilon = 0 \) gives lowest-variance SDF and further has a unique solution [Cochrane (2005)]

2. Consider some restrictions on exchange-rate wedge \(\eta \) for \(\alpha = 0, \alpha = 2 \)
 - \(\eta = 0 \) for \(\alpha = 0 \): Even with incomplete markets, minimum-entropy SDF is inverse of growth-optimal portfolio, which can be expressed in either domestic or foreign currency, so we’re stuck with
 - \(\eta = 0 \) for \(\alpha \neq 2 \iff \text{Span (domestic returns)} = \text{Span (foreign returns)} \); otherwise, there are unspanned exchange-rate risks

3. Decompose SDF into permanent/transitory components
Theoretical Setting

Toolkit:

1. Solve for minimum-dispersion SDFs
 - This problem is a bit convoluted — \(\min_M \log \mathbb{E}[M^\alpha] / (\alpha(\alpha - 1)) \). subject to pricing equation
 - But in practice, the authors consider just two such solutions:
 (i) minimum entropy (\(\alpha = 0 \)), and (ii) minimum variance (\(\alpha = 2 \))
 - Proposition 1 gives “cookbook” for doing so given observed returns & \(\alpha \)
 - Important: Minimum-variance SDF is the unique SDF in return space
 \(\iff \) gives projection of “true” SDF onto return space

2. Consider some restrictions on exchange-rate wedge \(\eta \) for \(\alpha = 0, \alpha = 2 \)
 - \(\eta = 0 \) for \(\alpha = 0 \): Even with incomplete markets, minimum-entropy SDF is inverse of growth-optimal portfolio, which can be expressed in either domestic or foreign currency, so we’re stuck with \(x = m_f - m_d \)
 - \(\eta = 0 \) for \(\alpha \neq 0 \) iff \(\text{Span(domestic returns)} = \text{Span(foreign returns)} \); otherwise, there are unspanned exchange-rate risks

3. Decompose SDF into permanent/transitory components
Theory: Interpretation and Comments

Interpretation:

1. There are lots of (infinitely many) SDFs in incomplete markets. How to interpret the series of minimum-dispersion SDFs that the authors solve for?
 ▶ Partial answer: These solutions by design give us conservative estimates of the moment being minimized
 ▶ But what about the other moments? Are we over- or underestimating the correlation between domestic & foreign SDFs? The cyclicality of the wedge? …

2. “Unspanned” exchange-rate risks: Exchange rate fluctuates based on innovations to $M(\text{min. entropy}) - M(\text{min. variance})$ in both countries, which is orthogonal to traded returns
 ▶ Direction and economic intuition a bit unclear
 ▶ $X \uparrow$ when foreign unspanned risk is “worse,” in order to compensate domestic investors for taking on that risk?
Outline

1. Theory

2. Empirical Implementation

3. Results
Empirics

- Integrated but incomplete markets benchmark is that investors have access to aggregate equity, 10-year ($\approx \infty$-year) bonds, and short-term bonds in all (8) countries
 - US is domestic, average of all others is foreign
- This seems substantive and important: minimum-variance SDF depends on highest attainable Sharpe ratio, which of course depends on the set of assets you allow people to trade (and on the sample)
 - Sophisticated investors can access nonlinear foreign portfolios using derivatives
 - What’s the covariance of state-price densities of domestic vs. foreign stocks? Would seem to give valuable information about shared risks
 - Instead, we’re left to decide what a “reasonable” amount of risk-sharing vs. wedge volatility is when explaining exchange rate smoothness
- Segmented alternative: each country’s investors trade in their own 3 assets, plus short-term bond in other countries
Sensitivity

Table 2. Properties of SDFs (Integrated Markets)

The table reports joint sample moments of the SDF and its components. Panel A reports statistics with respect to the minimum-entropy SDFs ($\alpha = 0$) and Panel B for minimum variance SDFs ($\alpha = 2$), $i = d, f, j = d, f, i \neq j$. The SDFs are derived when international trading is unrestricted, i.e. the financial markets are integrated. There is a US domestic SDF for each bilateral trade. We use monthly data from January 1975 to December 2015.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: $\alpha = 0$ (minimum entropy)</td>
<td></td>
</tr>
<tr>
<td>E(M_i)</td>
<td>0.982</td>
<td>0.973</td>
<td>0.982</td>
<td>0.990</td>
<td>0.982</td>
<td>0.991</td>
<td>0.982</td>
<td>0.980</td>
<td>0.982</td>
<td>0.966</td>
<td>0.982</td>
<td>0.973</td>
<td>0.982</td>
<td>0.956</td>
</tr>
<tr>
<td>Std(M_i)</td>
<td>0.841</td>
<td>0.872</td>
<td>0.979</td>
<td>0.926</td>
<td>0.740</td>
<td>0.694</td>
<td>0.690</td>
<td>0.681</td>
<td>0.919</td>
<td>0.951</td>
<td>0.726</td>
<td>0.720</td>
<td>0.639</td>
<td>0.557</td>
</tr>
<tr>
<td>Std(M_i^2)</td>
<td>0.120</td>
<td>0.122</td>
<td>0.120</td>
<td>0.120</td>
<td>0.091</td>
<td>0.120</td>
<td>0.068</td>
<td>0.120</td>
<td>0.107</td>
<td>0.120</td>
<td>0.111</td>
<td>0.120</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td>Std(M_i^3)</td>
<td>0.917</td>
<td>0.948</td>
<td>1.048</td>
<td>0.951</td>
<td>0.814</td>
<td>0.707</td>
<td>0.774</td>
<td>0.725</td>
<td>1.029</td>
<td>1.065</td>
<td>0.823</td>
<td>0.827</td>
<td>0.681</td>
<td>0.625</td>
</tr>
<tr>
<td>$\sqrt{\text{Entropy}(M_i)}$</td>
<td>0.684</td>
<td>0.703</td>
<td>0.795</td>
<td>0.753</td>
<td>0.687</td>
<td>0.636</td>
<td>0.604</td>
<td>0.585</td>
<td>0.732</td>
<td>0.702</td>
<td>0.618</td>
<td>0.616</td>
<td>0.581</td>
<td>0.519</td>
</tr>
<tr>
<td>corr(M_i^2, M_i^3)</td>
<td>-0.454</td>
<td>-0.498</td>
<td>-0.407</td>
<td>-0.233</td>
<td>-0.519</td>
<td>-0.115</td>
<td>-0.549</td>
<td>-0.502</td>
<td>-0.411</td>
<td>-0.636</td>
<td>-0.506</td>
<td>-0.607</td>
<td>-0.317</td>
<td>-0.634</td>
</tr>
<tr>
<td>corr(M_i, M_j)</td>
<td>0.992</td>
<td>0.989</td>
<td>0.989</td>
<td>0.989</td>
<td>0.985</td>
<td>0.992</td>
<td>0.992</td>
<td>0.994</td>
<td>0.994</td>
<td>0.981</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B: $\alpha = 2$ (minimum variance)</td>
<td></td>
</tr>
<tr>
<td>E(M_i)</td>
<td>0.982</td>
<td>0.973</td>
<td>0.982</td>
<td>0.990</td>
<td>0.982</td>
<td>0.991</td>
<td>0.982</td>
<td>0.980</td>
<td>0.982</td>
<td>0.966</td>
<td>0.982</td>
<td>0.973</td>
<td>0.982</td>
<td>0.956</td>
</tr>
<tr>
<td>Std(M_i)</td>
<td>0.739</td>
<td>0.754</td>
<td>0.873</td>
<td>0.834</td>
<td>0.699</td>
<td>0.658</td>
<td>0.639</td>
<td>0.622</td>
<td>0.776</td>
<td>0.791</td>
<td>0.659</td>
<td>0.655</td>
<td>0.600</td>
<td>0.535</td>
</tr>
<tr>
<td>Std(M_i^2)</td>
<td>0.120</td>
<td>0.122</td>
<td>0.120</td>
<td>0.061</td>
<td>0.120</td>
<td>0.091</td>
<td>0.120</td>
<td>0.068</td>
<td>0.120</td>
<td>0.107</td>
<td>0.120</td>
<td>0.111</td>
<td>0.120</td>
<td>0.091</td>
</tr>
<tr>
<td>Std(M_i^3)</td>
<td>0.803</td>
<td>0.824</td>
<td>0.930</td>
<td>0.853</td>
<td>0.763</td>
<td>0.670</td>
<td>0.711</td>
<td>0.659</td>
<td>0.839</td>
<td>0.874</td>
<td>0.733</td>
<td>0.735</td>
<td>0.632</td>
<td>0.595</td>
</tr>
<tr>
<td>corr(M_i^2, M_i^3)</td>
<td>-0.517</td>
<td>-0.587</td>
<td>-0.455</td>
<td>-0.268</td>
<td>-0.552</td>
<td>-0.169</td>
<td>-0.597</td>
<td>-0.564</td>
<td>-0.500</td>
<td>-0.775</td>
<td>-0.566</td>
<td>-0.683</td>
<td>-0.340</td>
<td>-0.665</td>
</tr>
<tr>
<td>corr(M_i, M_j)</td>
<td>0.989</td>
<td>0.988</td>
<td>0.989</td>
<td>0.984</td>
<td>0.988</td>
<td>0.984</td>
<td>0.988</td>
<td>0.988</td>
<td>0.993</td>
<td>0.979</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Disaggregated integrated-market results across countries
- Focus on second row in panel B: US columns show that estimated minimum SDF volatility ranges from 0.6 to 0.87 (increase of 45%) depending on the foreign country considered
Outline

1. Theory

2. Empirical Implementation

3. Results
Results

Results on exchange-rate puzzles:

1. Forward premium puzzle
 ▶ Estimated SDFs price carry returns by design, so this gets taken care of “for free”

2. Exchange rate smoothness
 ▶ With integrated markets, even with XR wedge (minimum-variance case), need nearly perfect correlation between domestic & foreign SDFs (perfect risk-sharing) to explain the data. (Holds in general?)
 ▶ Segmented markets: Lower SDF volatility (almost mechanically); less SDF comovement; higher wedge
 ▶ Is this a win for the segmented-markets model?

3. Cyclicality puzzle
 ▶ Still have $\text{Cov}(x, m_f - m_d) / \text{Var}(x) \approx 1$
 ▶ So the response to the puzzle here is either: (i) consumption is the wrong proxy for the SDF; (ii) it could be the right proxy at short horizons (captured as temporary component as SDF, which exhibits acyclicality w.r.t. x), but the permanent component is what matters
Final Notes

▶ Really interesting paper, getting at important questions
▶ Lots of other stuff (including on possible importance of intermediaries) I didn’t even have time to touch on!
▶ Would love more on interpretation of minimum-dispersion SDFs — should we be taking them literally?
▶ Some room for additional empirical tests with more assets