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Background
The “classics” in asset-pricing puzzles:

1. Equity premium puzzle
I Risk aversion looks too high!
I Mehra and Prescott (1985), Hansen and Jagannathan (1991)

2. Risk-free rate puzzle
I High risk aversion gives implausibly high and volatile risk-free rate
I Weil (1989)

3. Equity volatility puzzle
I Covered last week
I Shiller (1981), many others

See Campbell (2003) for an excellent survey.

Lots of proposed solutions, and still a lively literature (that I’ve worked within!).

But the puzzles themselves are well known, and possibly boring.
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Background
The good news:

I In recent years, lots of debate about new puzzles and findings: heterogeneity,
household behavior, inequality, cross-sectional returns, arbitrage, . . .

I Today: puzzles related to the term structure of returns

I Intuitively, exposure to distant-horizon uncertainty seems “worse” than
exposure to near-term uncertainty =⇒ long-horizon claims should command
a premium (and have higher Sharpe ratios) relative to short-horizon claims

I Empirically, using claims to equity dividends at different horizons, seem to
find the opposite!

The bad news:

I Runs counter to all the models the literature relied on to resolve the classic
puzzles!

I But this is of course actually good news for you: Lots of work to be done
figuring out why this is the case, and how robust it is
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Outline

1. Background & Intro

2. Binsbergen, Brandt, and Koijen (AER, 2012)

3. Lazarus (2018)

4. Gormsen and Lazarus (2019)



BBK (2012): Background and Setup

I Paper that kicked off this literature

I Very simple:

Index pricet =
∞

∑
i=1

Et

[
Mt+i
Mt

Dt+i

]

=
T

∑
i=1

Et

[
Mt+i
Mt

Dt+i

]
︸ ︷︷ ︸

price of short-term asset≡Pt,T

+
∞

∑
i=T+1

Et

[
Mt+i
Mt

Dt+i

]
︸ ︷︷ ︸

price of long-term asset

I How to measure Pt,T (and by implication, long-term asset)? Use S&P 500
index options, since put-call parity for option of maturity T tells us:

ct,T,K + Ke−rf
t,T(T−t) = pt,T,K + Index pricet −Pt,T

for calls & puts with strike K. Rearrange to solve for Pt,T.
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BBK (2012): Basic Results
Holding-period returns, volatility, Sharpe ratio for short-term asset (R1,t)
significantly higher than for index itself:

I R2,t is short-term asset return calculated using “dividend steepener” (to avoid
concerns about costly index replication)

I Both results suggest downward-sloping term structure of equity returns

I Basic results hold (esp. for Sharpe ratios) using direct measurement via
dividend futures: Binsbergen, Hueskes, Koijen, Vrugt (JFE, 2013)

I Data for BBK: https://www.aeaweb.org/aer/data/june2012/20101209_data.zip
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BBK (2012): Additional Results

1. The two-year short-term asset has an average price of ∼ 3% of the overall
S&P 500 price =⇒most of index value is in claims to long-horizon cash flows

2. Nonetheless, there’s still significant excess volatility in the price of the
short-term asset relative to dividends:

I Relates to evidence from paper I presented to you last week
I As a corollary to point 2, short-term asset returns are highly predictable
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Downward-Sloping Term Structure: Theory
What does existing theory have to say about these results?

I On the one hand, maybe this is intuitive from the standpoint of the
well-known value premium
I If growth (high book-to-market) stocks have long-horizon cash flows,

then their low returns relative to value stocks line up with BBK’s results
[Lettau and Wachter (2007)]

I On the other hand. . .all workhorse models (long-run risks, habit, rare
disasters) fail to reproduce BKK’s results

1. LRR: Bad consumption-growth shocks increase marginal utility and
decrease future expected dividends, and this effect hits long-horizon
claims most, so they have higher risk premia

2. Habit: similar intuition
3. Rare disasters: All growth is i.i.d., so term structure is flat, but Sharpe

ratios are decreasing since volatility increases with maturity
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Downward-Sloping Term Structure: Theory
What does existing theory have to say about these results?
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Downward-Sloping Term Structure: Theory

I Useful results: allow us to rule out certain features of existing theories

I But some concern about issues of measurement error, so how robust are the
results?

I And from a positive standpoint, unclear where this leaves us

I Why does short-horizon equity give higher returns? Is it riskier per se, or do
people just dislike the short-horizon risk more?
I In asset-pricing jargon: is it quantity or price of risk that’s driving the

results?

I Will now cover my paper trying to address a small portion of these questions:
“Horizon-Dependent Risk Pricing: Evidence from Short-Dated Options”
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Background

How do people assess risky outcomes at different horizons?

I Recent literature [Binsbergen, Brandt, Koijen (2012), . . .]: Some evidence of
downward-sloping term structure of equity returns, Sharpe ratios
I Problem 1: Measurement error, short sample

[Boguth et al. (2012), Bansal, Miller, Yaron (2017)]

microstructure noise =⇒ upward bias of holding-period returns
on short-term dividend strips

I Problem 2: Interpretation? Downward-sloping price or quantity of risk?
e.g., mean-reverting shocks (disaster + recovery) [Hasler and Marfè (2016)]

I Where I come in: Binary options over market index value at short horizons

1. Already have data from previous paper I presented!

2. Longer sample, and can address measurement error directly:
buy-and-hold returns, plus instrument

3. Provides additional info on source of declining risk premium:
downward-sloping price of risk matters
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Preview of Results

I Findings: Price of risk declines strongly with horizon
I One-week horizon: RRA ≈ 15
I 12-week horizon: RRA ≈ 3

I How can I calculate RRA from option returns?
I Simple answer: I can’t
I More complete answer: I can look at strategies that fix riskiness of

investment across horizons =⇒ tells us price of this risk
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Preview of Results

I Findings: Price of risk declines strongly with horizon
I One-week horizon: RRA ≈ 15
I 12-week horizon: RRA ≈ 3

I I’ve fixed riskiness of investment only along one dimension. What if there are
multiple sources of risk — is my interpretation still valid?

I Working under null that risk prices are in fact constant by horizon, derive
necessary condition for rational framework to generate my results
I Risk aversion over index return must decrease with marginal utility
I Counterintuitive, difficult to meet this condition

I Lots of possible alternatives, but I’ll discuss one in particular:
dynamically inconsistent risk preferences (declining risk prices by horizon)

I Can be viewed as reduced-form version of loss aversion + narrow
framing, with narrow framing stronger as horizon becomes shorter
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Estimation Setting: Empirical Illustration

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 1, 2005
Expiration Date: July 16, 2005
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S&P 500 Option Prices and Risk-Neutral Beliefs as of July 5, 2005
Expiration Date: July 16, 2005

Call Option Prices

1100 1150 1200 1250 1300
0

20

40

60

80

100

Strike Price

O
pt

io
n

Pr
ic

e

Risk-Neutral Beliefs

1100 1150 1200 1250 1300
0

0.1

0.2

0.3

0.4

0.5

Terminal Index Value

Bi
n

Pr
ob

ab
ili

ty

Conditional Beliefs: 1175–1200 vs. 1200–1225

0

0.25

0.5

0.75

1

Bi
na

ry
Pr

ob
ab

ili
ty

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 6, 2005
Expiration Date: July 16, 2005
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S&P 500 Option Prices and Risk-Neutral Beliefs as of July 7, 2005
Expiration Date: July 16, 2005

Call Option Prices

1100 1150 1200 1250 1300
0

20

40

60

80

100

Strike Price

O
pt

io
n

Pr
ic

e

Risk-Neutral Beliefs

1100 1150 1200 1250 1300
0

0.1

0.2

0.3

0.4

0.5

Terminal Index Value

Bi
n

Pr
ob

ab
ili

ty

Conditional Beliefs: 1175–1200 vs. 1200–1225

0

0.25

0.5

0.75

1

Bi
na

ry
Pr

ob
ab

ili
ty

11



Estimation Framework (I)

Notation and definitions:

I Index value Vt

I Index options begin trading on (normalized) date 0, expiration T

I Set (or subset) of possible index values at terminal date VT ≡ {v1, . . . , vJ}
[assume discrete probability space (Ω,F , {Ft}t>0, P) for simplicity]

I πt,j ≡ Pt(VT = vj |VT ∈ {vj, vj+1})

I Absence of arbitrage =⇒ risk-neutral measure P∗, prob. π∗t,j, where

π∗t,j =
Et[MT |VT = vj]

Et[MT |VT ∈ {vj, vj+1}]
πt,j,

for strictly positive SDF process {Mt}
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Estimation Framework (II)
Recall:

I πt,j ≡ Pt(VT = vj |VT ∈ {vj, vj+1})

I π∗t,j ≡ P∗t (VT = vj |VT ∈ {vj, vj+1}) =
Et[MT |VT=vj]

Et[MT |VT∈{vj,vj+1}] πt,j

I Rearranging,
π∗t,j

1− π∗t,j
= φt,T,j

πt,j

1− πt,j
,

where φt,T,j ≡
Et[MT |VT = vj]

Et[MT |VT = vj+1]

I Will be interested in how price of risk φt,T,j changes with horizon T− t

I Why use binary options? This price of risk can be viewed as (local) relative
risk aversion for (fictitious) rep. agent who consumes terminal index value:

γt,T,j =
φt,T,j − 1

(vj+1 − vj)/vj

I For notational convenience, assume:

1. Scale independence: if vj+1/vj = vk+1/vk, then φt,T,j = φt,T,k = φt,T

2. Horizon-only dependence: φt,T = φT−t

Claim: Assumptions are innocuous; could just as well define φT−t ≡ E[φt,T,j],
estimate by pooling over all dates t and state pairs j
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Estimation Framework (III)
Moment condition:

I From above,

πt,j =
π∗t,j

π∗t,j + φT−t(1− π∗t,j)
,

so since πt,j = Et[1{VT = vj} |VT ∈ {vj, vj+1}] by definition,

Et

[
1{VT = vj} −

π∗t,j
π∗t,j + φT−t(1− π∗t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= 0

I Intuition: Estimating price of risk needed to reconcile ex-ante market
forecast of terminal outcome with average observed outcome

I No assumption on rationality of underlying subjective beliefs πt,j

I Measurement error: π̂∗t,j = π∗t,j + εt,j, where εt,j follows MA(q). Can then be
shown that up to higher order,

Et

[
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= −εt,j
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GMM Estimation

Et

[
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

∣∣∣∣∣ VT ∈ {vj, vj+1}
]
= −εt,j

I Instrument vector: Lagged observations Zt,j = (π̂∗t−q−1,j, . . . , π̂∗t−q,j)
′

I Yields unconditional orthogonality condition:

E

[(
1{VT = vj} −

π̂∗t,j
π̂∗t,j + φT−t(1− π̂∗t,j)

1
{

VT ∈ {vj, vj+1}
})

Zt,j

]
= 0

I Can now be estimated directly using GMM
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Summary of Estimation

1. Options =⇒market-implied (risk-neutral) distribution over index value at T

2. Transform into conditional probabilities: e.g., prob. that return will be
between 6% and 8% conditional on being either in [6%, 8%] or [8%, 10%]

3. π∗t is distorted relative to πt given risk aversion, but there is one-to-one
relationship between these two values that depends only on effective risk
aversion φT−t

4. πt must be an unbiased forecast of the terminal index-return outcome, which
is 1{return is in [6%, 8%] | return is in [6%, 10%]}. Since we observe π∗t , can
thus infer required φT−t such that underlying πt is unbiased forecast.

5. Varying T− t allows for estimation at different horizons, holding fixed the
binary return outcomes (adjacent 2-ppt return bins)
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Raw Data and Risk-Neutral Beliefs
Raw data:
I Want risk-neutral beliefs about return on market portfolio

=⇒ S&P 500 index option prices from OptionMetrics, 1996–2015 Details & cleaning

Measuring risk-neutral beliefs from options:
I Use standard techniques [Breeden & Litzenberger (1978)] to measure risk-neutral

distribution for return state from option prices Details & robustness

I Return space:

OutcomeT =



v1 if − 0.10 6

excess return from 0 to T︷ ︸︸ ︷
log(VT)− log(V0)− log(Rf

0,T) 6 −0.08

v2 if − 0.08 6 log(VT)− log(V0)− log(Rf
0,T) 6 −0.06

...

vJ if 0.08 6 log(VT)− log(V0)− log(Rf
0,T) 6 0.10

I 2-ppt bins for excess returns
I Exclude tail states (poorly measured, non-constant φT−t,j, . . .)
I < 200 observations beyond 12 weeks, so consider horizons 1-12
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Reminder: Data Example

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 1, 2005
Expiration Date: July 16, 2005
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Main Estimation Results
Estimates of Risk Prices by Horizon

Estimation by Two-Step GMM with Five-Day-Lag Instrument

1 2 3 4 5 6 7 8 9 10 11 12
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Horizon in Weeks (κ)

R
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k
Pr
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e

φ
κ

I RRA: 14.7 [10.4, 18.9] at one week, 3.4 [0.1, 6.6] at 12 weeks
I No apparent equity premium puzzle! [Bliss and Panigirtzoglou (2004)]
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Main Estimation Results
Estimates of Risk Prices by Horizon

Estimation by Two-Step GMM with Five-Day-Lag Instrument
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I RRA: 14.7 [10.4, 18.9] at one week, 3.4 [0.1, 6.6] at 12 weeks
I J-statistic: p = 0.30 (HAR standard errors)
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Main Estimation Results
Estimates of Risk Prices by Horizon

Estimation by Two-Step GMM with Five-Day-Lag Instrument
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I RRA: 14.7 [10.4, 18.9] at one week, 3.4 [0.1, 6.6] at 12 weeks
I Results robust to different instrument sets
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Downward-Sloping Risk Pricing

To test more formally whether downward slope is robust, estimate regression:

φ̂κ = α + β κ + εκ

I Null: β = 0

I Test using bootstrap: Estimate φκ on bootstrap samples, rerun regression in
each sample, and calculate 95% CI as [β̂− q∗(0.975), β̂− q∗(0.025)]

I q∗(·) is the quantile function of the bootstrap distribution of β̂∗ − β̂

I Results:

β̂ = −0.018,

95% CI [−0.041,−0.007]

I Downward-sloping term structure of risk prices
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Interpretation: Standard Frameworks (I)

Consider simple 2× 2 example:

1/2

1/2

1/2

1/2
1/2

1/2

V2 = L, M2 = aL

V2 = H, M2 = aH

V2 = L, M2 = bL

V2 = H, M2 = bH

t = 2t = 1t = 0

I Normalizations: aL > aH, bL > bH, bj > aj for j = L, H

I φt ≡ Et[M2 |VT=L]
Et[M2 |VT=H]

, and want to know under what conditions φ0 < E0[φ1]

I Simple necessary & sufficient condition:

aL
aH

>
bL
bH

,

or φ1,a > φ1,b
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Interpretation: Standard Frameworks (I)

Consider simple 2× 2 example:

1/2

1/2

1/2

1/2
1/2

1/2

V2 = L, M2 = aL

V2 = H, M2 = aH

V2 = L, M2 = bL

V2 = H, M2 = bH

t = 2t = 1t = 0

I Normalizations: aL > aH, bL > bH, bj > aj for j = L, H

I φ1,a > φ1,b =⇒ risk aversion must be higher when agent receives good news in
the sense that marginal utility is expected to be low

I Long-horizon gamble on good-state outcome H must be a good hedge against
bad intermediate MU news
I Not true in standard models (next slide: LRR)
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Interpretation: Standard Frameworks (II)

Risk Prices by Horizon in the Long-Run Risks Model

1 2 3 4 5 6
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k
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e

φ
κ

Notes: Risk prices are calculated as averages over 2,000,000 years of simulated monthly data. The model
and calibration are as given in Bansal & Yaron (2004, Case II). I solve the model numerically using the
projection method of Pohl, Schmedders, & Wilms (2018).
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Interpretation: Other Frameworks and Questions

Narrow bracketing and dynamically inconsistent risk preferences:

I Tversky and Kahneman (1981): Evidence of “narrow bracketing” of risks

I When do people narrowly frame? Results here seem to suggest it happens
when horizon is short
I Eisenbach & Schmalz (2016): Similar experimental evidence, suggesting

dynamically inconsistent risk preferences as possible reduced-form modeling tool:

Vt =

(1− δ)C
1− 1

ψ

t + δEt

[
Ṽ1−γ1

t+1

] 1− 1
ψ

1−γ1


1

1− 1
ψ

,

where Ṽt+1 =

(1− δ)C
1− 1

ψ

t+1 + δEt

[
Ṽ1−γ2

t+2

] 1− 1
ψ

1−γ2


1

1− 1
ψ
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Final Notes

Summary:
I Present evidence of declining term structure of risk prices . . .

I . . . w.r.t. gambles over small changes in market index value
I . . . over short to medium horizons

Interpretations:
I Tough to rationalize in context of standard rep. agent models

I Have argued (vaguely) for time-inconsistent risk preferences, but could be:

1. Belief biases: agents more pessimistic at shorter horizons

2. Heterogeneity?

Other: Preferences over timing of resolution of uncertainty, interpretation relative
to Augenblick and Lazarus (2018), other asset classes, . . .
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Intro

I Won’t belabor the point on this paper too much, since it’s early-stage and
we’re likely short on time (though see course site for draft)

I We do an exercise showing that many of the well-known cross-sectional
return anomalies can be nearly fully explained by exposure to a cash-flow
duration factor
I High cash-flow growth (and thus high cash-flow duration) predict low

returns in the cross-section, and vice versa

I Consistent with aggregate evidence from previous papers: short-term risk
again seems to have a higher premium, and provides unifying framework for
thinking about lots of seemingly separate cross-sectional puzzles

I We’re not yet pointing to a structural/causal explanation

I But explaining the above evidence would bring together lots of disparate
anomalies, both in aggregate and cross-sectional data
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Main Empirical Finding
Relation between cash-flow growth and returns for 60 portfolios sorted on
characteristics known to predict returns:
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Additional Empirical Results

I Results also hold using analyst expectations. . .

I . . . and an accounting measure of ex-ante duration. . .

I . . . and globally. . .

I . . . and when regressing cross-sectional characteristics directly on the above
measures

I Then construct an equity “yield curve” by looking at book-to-market ratios of
duration-sorted portfolios
I Slope of this yield curve predicts 5-year aggregate market return with R2

of 40%
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Theory

I Don’t yet have a structural/microfounded explanation
I Currently working on explanation based on expectation errors

I Current theory: Reduced-form model for SDF as in Lettau and Wachter (2007),
where only dividend risk is priced
I As long as we assume that there’s long-run insurance in dividend growth

— i.e., negative contemporaneous shocks correlated with higher growth
rates — we can recreate all our empirical findings
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Final Notes

I This is still a wide-open area, with lots of questions to be addressed

I Robustness of findings? Unifying different asset classes? Structural
explanations in terms of preferences, technology, beliefs?

I Nice summary of state of existing literature, along with open questions and
suggestions for future research: Binsbergen and Koijen (JFE, 2017)
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Appendix for Lazarus (2018)



Raw Data: Details and Cleaning

Details of data:
I End-of-day prices for calls and puts, Jan. 1996–Aug. 2015, all traded strikes

=⇒ 685 expiration dates Ti; 4,949 trading dates; 7,385,062 option prices

I Also obtain underlying index price, dividend yield, and risk-free rates from
OptionMetrics, and hand-collect option settlement values from CBOE

Data cleaning:

I Drop any options with: bids of 0, Black-Scholes implied vol. more than
100%, greater than 6 months to maturity [Constantinides, Jackwerth, Savov
(2013)], and any trading date–expiration date combos with fewer than 3
listed prices

I Calculate end-of-day price as average of listed bid and ask prices

I Cleaning for conditional risk-neutral probabilities: to avoid noisy
measurement, only use date–state pairs meeting π∗t,Ti,j + π∗t,Ti,j+1 > 5%

Back to main



Spline Details
I Calculate ∂

∂v qt,Ti (v) numerically following Malz (2014):

1. Transform call and put price schedules for each date–expiration date set
into Black-Scholes implied volatilities

2. Fit clamped cubic splines to interpolate implied vols between strike
prices for both calls and puts

3. Average the calculated call and put implied vols at 1,900 strike prices

4. Invert Black-Scholes implied volatility function to transform resulting
implied vols back into call prices

5. Numerically difference the resulting smoothed call-price schedule

I We only use Black-Scholes implied vols for smoothing and then transform
vols back into prices, so doesn’t require Black-Scholes model to be correct

I “Clamped” cubic spline: Sets slope of implied vol schedule to be zero at
boundary strike-price values, and sets all implied vols below minimum
observed strike price to value at minimum price (likewise for max.)

I This guarantees monotonically decreasing and convex call price schedule,
which maintains no-arbitrage restrictions

I This is an interpolating spline: passes through all observed data (or knot) points



Alternative Smoothing Method

Bliss and Panigirtzoglou (2004) spline:

I Natural spline in implied vol–delta (∆ =
∂q
∂v ) space, weighted by vega (ν =

∂q
∂σ )

I Smoothing spline: Penalizes squared second derivative of spline, with weight
λ = 0.01 relative to deviations from observed data

I Force horizontal implied vol extrapolation by adding pseudo-data three strike
intervals above/below observed strikes with implied vols equal to min./max.
observed values before calculating spline

I Use out-of-the-money options (puts below current forward price, calls above)

In both cases, we set any negative probability values to 0 and renormalize the
distribution accordingly. We calculate Bliss and Panigirtzoglou (2004) values to
check robustness of main results.

Back to main
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