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Background
Oversimplification of (some moderately sized subset of) the asset-pricing literature:

1. Write down fully specified model of the world

2. Plug some numbers in

3. See if you can replicate data, especially some puzzling aspect(s) of data

What’s the goal here?

I Use asset prices as relevant info about the underlying structure of the world

I If your model explains the data, then maybe we’ve learned something about
beliefs, preferences, stochastic processes we care about, . . .

My approach instead has been:

I Make some general(ish) assumptions that allow for statements of the form:

data =⇒ underlying structure of the world

without fully specified model

I This is not my invention! Lots of extremely well-known papers take this form
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Background
Review of one example: Hansen & Jagannathan (1991)
[simpler version following Shiller (1982), Hansen (1982)]

I Consider a single risky asset (i) and risk-free asset (f )
I Pricing equation and Cauchy-Schwartz inequality give:

E[M(Ri − Rf )] = 0

⇐⇒ Cov(M, Ri − Rf ) + E[M]E[Ri − Rf ] = 0

⇐⇒ E[Ri − Rf ] =
−Cov(M, Ri − Rf )

E[M]
=
−Corr(M, Ri − Rf )σ(M)σ(Ri − Rf )

E[M]

6
σ(M)σ(Ri − Rf )

E[M]
,

so SR(Ri − Rf ) ≡
E[Ri − Rf ]

σ(Ri − Rf )
6

σ(M)

E[M]

I Much more general form of equity premium puzzle: setting i = market,
E[M] = 1

Rf
, get lower bound for σ(M) around 0.4 (and can be made sharper)
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Background
Question I became interested in:

I How restrictive is the assumption of rational expectations?
I Can we come up with bounds on primitives under general conditions?
I Yes, and bounds end up being informative
I Either (a) RE doesn’t hold, (b) condition under which bound is derived is

strongly violated, or (c) risk aversion is extremely high

I Bound relates asset-price volatility to risk aversion required to rationalize that
volatility

I Why use volatility as being informative about expectations?

1. First became interested after “Taper Tantrum” mid-2013

2. Long history of volatility bounds, following Shiller (1981)

3. Encountered a useful starting point (Augenblick & Rabin, 2018) at the
right time

I Done with (most of) throat-clearing — remainder of slides go through JMP
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Introduction

How restrictive is the assumption of rational expectations in asset markets?

I Joint hypothesis problem =⇒ no free answers

I Illustration: Volatility bounds [e.g., Shiller (1981)]:

Pt + error = ex-post fundamental value

=⇒ Var(Pt) < Var(ex-post fundamental value) [Theory]

Var(Pt) > Var

(
∞

∑
j=1

Dt+j

Rj

)
[Data]

constant discount rates

I Response [Fama (1991)]:

“Volatility tests are a useful way to show that expected returns vary, [but] give no
help on the central issue of whether the variation in expected returns is rational.”

I Can we say anything with weaker assumptions? Yes.
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How restrictive is the assumption of rational expectations in asset markets?

I Joint hypothesis problem =⇒ no free answers

I Illustration: Volatility bounds [e.g., Shiller (1981)]:

S&P 500

Discounted dividends

[exponentially detrended values]

constant discount rates
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I Can we say anything with weaker assumptions? Yes.
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Our Contributions

1. Theory: In general framework, derive bound under RE:

Variation in market-implied beliefs
[risk-neutral beliefs]

6 f (risk aversion
[SDF slope]

)

I N.B. comparison with Hansen–Jagannathan (1991) bound:

Sharpe ratio for returns
[first moment]

6 g(risk aversion
[SDF volatility]

)

2. Evidence:

I S&P index options

I Volatile risk-neutral beliefs =⇒ very high required risk aversion

Possible objections:

(a) Restriction: Et[U′T | return state a]/Et[U′T | return state b] constant over t

(b) Measurement noise in option prices
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I S&P index options

I Volatile risk-neutral beliefs =⇒ very high required risk aversion

Possible objections:

(a) Restriction: Et[U′T | return state a]/Et[U′T | return state b] constant over t

I Risk-neutral belief volatility is still an informative moment

(b) Measurement noise in option prices
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Our Contributions

1. Theory: In general framework, derive bound under RE:

Variation in market-implied beliefs
[second moment]

6 f (risk aversion
[SDF slope]

)

I N.B. comparison with Hansen–Jagannathan (1991) bound:

Sharpe ratio for returns
[first moment]

6 g(risk aversion
[SDF volatility]

)

2. Evidence:
I S&P index options

I Volatile risk-neutral beliefs =⇒ very high required risk aversion

Possible objections:

(a) Restriction: Et[U′T | return state a]/Et[U′T | return state b] constant over t

(b) Measurement noise in option prices

I Will address directly
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Preview: Empirical Variation

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 1, 2005
Expiration Date: July 16, 2005
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Preview: Empirical Variation

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 5, 2005
Expiration Date: July 16, 2005
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Preview: Empirical Variation

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 6, 2005
Expiration Date: July 16, 2005
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Preview: Empirical Variation

S&P 500 Option Prices and Risk-Neutral Beliefs as of July 7, 2005
Expiration Date: July 16, 2005

Call Option Prices
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Graphical Intuition: Risk-Neutral Beliefs

Background: Index option prices =⇒ risk-neutral beliefs over future index price

I On date t, can buy or sell call option expiring at T with strike K. Payoff:

I With strike K + 1?

K K + 1
0
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Index Value at Terminal Date T

O
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n
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Graphical Intuition: Risk-Neutral Beliefs

Background: Index option prices =⇒ risk-neutral beliefs over future index price

I Payoff to buying option with strike K + selling strike K + 1 ≈ 1{IndexT > K}

=⇒ like an Arrow-Debreu security for the “state” {IndexT > K}

K K + 1
0

1

Optio
n with

St
rik

e K

Optio
n with

St
rik

e K
+

1

Index Value at Terminal Date T

O
pt

io
n

Pa
yo

ff

7



Graphical Intuition: Risk-Neutral Beliefs

Background: Index option prices =⇒ risk-neutral beliefs over future index price

I Payoff to buying option with strike K + selling strike K + 1 ≈ 1{IndexT > K}

=⇒ Pricet ≈ E∗t [1{IndexT > K}] = π∗t (IndexT > K)

K K + 1
0

1

Optio
n with

St
rik

e K

Optio
n with

St
rik

e K
+

1

Index Value at Terminal Date T

O
pt

io
n

Pa
yo

ff

7



Outline

1. Background & Intro

2. Theory: Restrictions Under Rational Expectations
Two-State Example
General Bounds

3. Empirics: Evidence from Index Options

4. Discussion and Conclusions



Two-State Example: Directly Observed Beliefs

Assumptions (dropped in general framework):

I Representative agent:

1. Risk-neutral, no discounting

2. Random terminal consumption: CT = Clow or Chigh

I Beliefs: πt ≡ subjective probability of state Clow

I Rational expectations: πt = Probt(CT = Clow)

I Arrow-Debreu security with payoff 1{CT = Clow}
I Risk neutrality =⇒ price = πt
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Two-State Example: Directly Observed Beliefs

Objects we’ll keep track of:

1. Belief movement: mt1,t2 ≡
t2

∑
t=t1+1

(πt − πt−1)
2

I “Volatility”⇐⇒ sum of squared changes in beliefs

2. Uncertainty resolution:

rt1,t2 ≡ (1− πt1 )πt1︸ ︷︷ ︸
uncertaintyt1

− (1− πt2 )πt2︸ ︷︷ ︸
uncertaintyt2

I “Uncertainty”⇐⇒ variance of binomial RV, maximized at 0.5

Restriction (Augenblick & Rabin, 2018):

Under RE, E[mt1,t2 ] = E[rt1,t2 ]. Derivation

I Formalizes “correct” amount of volatility of subjective beliefs

I Derivation uses only martingale property of beliefs: πt = Et[πt+1]
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Two-State Example: Directly Observed Beliefs

Objects we’ll keep track of for full path:

1. Belief movement: m ≡
T
∑

t=1
(πt − πt−1)

2

I “Volatility”⇐⇒ sum of squared changes in beliefs

2. Uncertainty resolution:

r ≡ (1− π0)π0︸ ︷︷ ︸
initial uncertainty

−(1− πT)πT
0

I “Uncertainty”⇐⇒ variance of binomial RV, maximized at 0.5

Restriction (Augenblick & Rabin, 2018):

Under RE, E[m] = r. Derivation

I Intuition: Changing beliefs⇐⇒must be learning something (on average)

I Violations can arise from too large (or small) belief revisions
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Two-State Example: Directly Observed Beliefs

T = 2, sequential fair coin flips at t = 1 and t = 2, CT =

{
Clow if HH
Chigh else

Statistics: Movement

m ≡ ∑2
t=1(πt − πt−1)

2

Uncertainty Resolution

r ≡ (1− π0)π0

Restriction:

 =⇒

E[m] = r

HH
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E[m] = 3/16

= 3/4× 1/4 = r X
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Two-State Example with Risk Aversion

Problem: Asset prices don’t give us subjective beliefs (joint hypothesis problem).
Assume now:

I Utility: E0 ∑T
t=0 U(Ct), U′′ < 0

I Equilibrium: A-D security with payoff 1{CT = Clow} now has price

qt(Clow) =
U′(Clow)

U′(Ct)
πt

=⇒ subjective beliefs no longer observable

I Define risk-neutral belief:

π∗t ≡
qt(Clow)

qt(Clow) + qt(Chigh)
=

U′(Clow)

Et[U′(CT)]
πt > πt

I Need not follow a martingale under RE =⇒ can have E[m∗] > E[r∗]
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Two-State Example with Risk Aversion

Back to coin-flip example, with U′(Clow) = 3×U′(Chigh):

Observables: Movement

m∗ ≡ ∑2
t=1(π

∗
t − π∗t−1)

2

I Simple variance swap payoff

Uncertainty Resolution

r∗ ≡ (1− π∗0 )π
∗
0

I Risk-neutral variance

Restriction: E[m∗ − r∗] 6 ??
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Path m∗ Frequency
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HT 5⁄16 5⁄8 1⁄4
T∗ 1⁄16 1⁄4 1⁄2

E[m∗] = 5/16

> (1− 1/2)× 1/2

= r∗ 8
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Two-State Example: Result

How much excess movement can there be?

Proposition
Under RE,

E0[m∗ − r∗] 6 π∗0 (π
∗
0 − π0)︸ ︷︷ ︸ = π∗0

(
π∗0 −

π∗0
π∗0 + φ︸︷︷︸
U′(Clow)/U′(Chigh)

(1− π∗0 )

)

indexes excess movement given
downward revisions to beliefs

room for downward movement
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General Framework: Setup (I)

Now have to take into account that state space isn’t binary.

Probability space:

I Discrete probability space (Ω,F , P), filtration F = {Ft}t∈N

I Ex-dividend value of market index: Vm
t : Ω→ R+

I Interested in its value on some option expiration date T
I Call option with strike K has payoff max{Vm

T − K, 0}
I Say that return state s ∈ S is realized if

Rm
T ≡

Vm
T

Vm
0

= s

I Objective probabilities of return states governed by P : F → [0, 1]
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General Framework: Setup (II)

Stochastic discount factor:
I Absence of arbitrage =⇒ existence of strictly positive stochastic discount

factor (SDF) process {Mt} s.t. price St of claim to random payoff XT is

St(XT) = Et

[
MT
Mt

XT

]
I Standard representative-agent economy: Mt+1

Mt
= β

U′(Ct+1)
U′(Ct)

I Risk-neutral measure for T-dated payoffs: dP∗

dP

∣∣∣
Ft

= MT/Mt
Et[MT/Mt]

Beliefs:
I Assume prices generated by some marginal trader observing public signals

I Agent observes signal vector θt ∈ Θ, with Ft = σ(θτ , 0 6 τ 6 t)

I Signal-generating process P(θt | Ft−1, Rm
T ) governs info on return states

I Belief distribution over return states: {πt(Rm
T = s)}s∈S
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General Framework: Setup (III)

Definition
An agent has rational expectations over return states at T if and only if both:

(i) Her date-0 priors coincide with the objective probabilities:

π0(Rm
T = s) = P0(Rm

T = s) ∀ s ∈ S .

(ii) She updates according to Bayes’ rule using the objective likelihood function:

πt(Rm
T = s) =

πt−1(Rm
T = s)P(θt| Ft−1, Rm

T = s)
P(θt| Ft−1)

.

I Under RE, risk-neutral belief distribution:

π∗t (R
m
T = s) =

Et[MT/Mt | Rm
T = s]

Et[MT/Mt]
πt(Rm

T = s)
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General Framework: Restriction for Identification

I Work with conditional risk-neutral beliefs for state sj vs. sj+1:

π̃∗t,j ≡ π∗t (R
m
T = sj | Rm

T ∈ {sj, sj+1}) =
π∗t (R

m
T = sj)

π∗t (R
m
T = sj) + π∗t (R

m
T = sj+1)

=⇒
π̃∗t,j

1− π̃∗t,j
=

Et[MT/Mt | Rm
T = sj]

Et[MT/Mt | Rm
T = sj+1]︸ ︷︷ ︸

:= φt,j

π̃t,j

1− π̃t,j

Definition
The SDF satisfies conditional transition independence (CTI) for the return-state
pair (sj, sj+1) and option expiration date T if φt,j is constant for all 0 6 t < T almost
surely, and we denote this constant by φj.

I π̃∗t,j changes must arise from subjective beliefs, not relative severity of states

I Requires that MT/Mt in sj depend in expectation only on sj and not on the
path of unobservable state variables between t and T

I φj ⇐⇒ utility curvature across states (roughly), and label states so that φj > 1
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General Framework: Restriction for Identification

I Work with conditional risk-neutral beliefs for state sj vs. sj+1:

π̃∗t,j ≡ π∗t (R
m
T = sj | Rm

T ∈ {sj, sj+1}) =
π∗t (R

m
T = sj)

π∗t (R
m
T = sj) + π∗t (R

m
T = sj+1)

=⇒
π̃∗t,j

1− π̃∗t,j
=

Et[MT/Mt | Rm
T = sj]

Et[MT/Mt | Rm
T = sj+1]︸ ︷︷ ︸

:= φt,j

π̃t,j

1− π̃t,j

Definition
The SDF satisfies conditional transition independence (CTI) for the return-state
pair (sj, sj+1) and option expiration date T if φt,j is constant for all 0 6 t < T almost
surely, and we denote this constant by φj.

What models work?
I Variable rare disasters

I Long-run risks

I Habit formation
17



General Framework: Restriction for Identification

I Work with conditional risk-neutral beliefs for state sj vs. sj+1:

π̃∗t,j ≡ π∗t (R
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Et[MT/Mt | Rm
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:= φt,j

π̃t,j

1− π̃t,j

Definition
The SDF satisfies conditional transition independence (CTI) for the return-state
pair (sj, sj+1) and option expiration date T if φt,j is constant for all 0 6 t < T almost
surely, and we denote this constant by φj.

What models work?
I Habit formation

But permanent shocks to the SDF are admissible in all models.
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Bound in General Framework & Interpretation

Proposition

Ẽ0[m∗j − r∗j ] 6 π̃∗
2

0,j

(
1− 1

π̃∗0,j + φj︸︷︷︸
U′(Clow)/U′(Chigh)

Et[MT | Rm
T =sj]/Et[MT | Rm

T =sj+1]

(1− π̃∗0,j)

)

General framework:

I Setting: Uncertainty over terminal value of market index, Vm
T

I State space: Many return states {sj} defined by Rm
T ≡

Vm
T

Vm
0
= sj

I Physical beliefs: π̃t,j ≡ πt(Rm
T = sj | Rm

T ∈ {sj, sj+1})

I Risk-neutral beliefs: SDF {Mt} =⇒ π̃∗t,j =
Et[MT | Rm

T = sj]

Et[MT | Rm
T ∈ {sj, sj+1}]

π̃t,j

I Identification restriction: φj is constant Robustness & simulations
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Bound in General Framework & Interpretation

Proposition

Ẽ0[m∗j − r∗j ] 6 π̃∗
2

0,j

(
1− 1

π̃∗0,j + φj︸︷︷︸
U′(Clow)/U′(Chigh)

Et[MT | Rm
T =sj]/Et[MT | Rm

T =sj+1]

(1− π̃∗0,j)

)

Features of bound and interpretation:

1. Relates observable values to unobserved structural parameter Discussion

2. Under risk neutrality (φj = 1): Bound becomes 0

3. Movement in risk-neutral beliefs still must correspond (on average) to agent
learning about return, but now have inequality bound where ∂bound

∂φj
> 0

4. Identifies min. required φj, which can be interpreted in terms of relative risk
aversion if ∃ rep. agent with utility over index level:

γj =
φj − 1

(sj+1 − sj)/sj
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Bound in General Framework & Interpretation

Proposition

Ẽ0[m∗j − r∗j ] 6 π̃∗
2

0,j

(
1− 1

π̃∗0,j + φj︸︷︷︸
U′(Clow)/U′(Chigh)

Et[MT | Rm
T =sj]/Et[MT | Rm

T =sj+1]

(1− π̃∗0,j)

)

Taking φj → ∞:

Corollary

If E0[m∗j − r∗j ] > π̃∗
2

0,j , then no SDF process under which φj is constant can
rationalize the variation in risk-neutral beliefs for the given return-state pair.

I Can have so much excess vol. that no amount of risk aversion works
I Contrast with Hansen–Jagannathan bound
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Graphical Intuition: Bound in Proposition 1
Excess Belief Movement vs. Prior by φj Under RE
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Outline

1. Background & Intro

2. Theory: Restrictions Under Rational Expectations

3. Empirics: Evidence from Index Options
Data
Baseline Results
Channels and Robustness

4. Discussion and Conclusions



Raw Data and Risk-Neutral Beliefs
Raw data:
I Want beliefs about return on market portfolio

=⇒ Data on S&P 500 index option prices from OptionMetrics, 1996–2015

Details and cleaning

Measuring risk-neutral beliefs from options:
I Breeden and Litzenberger (1978): Index price Vm

T has risk-neutral CDF

P∗t (V
m
T 6 v) = 1 + Rf

t,T
∂

∂v
qm

t (v)︸ ︷︷ ︸
option price

at strike v

I Calculate ∂
∂v qm

t (v) numerically following Malz (2014) Details and alternative method

I Excess-return space:

Sbaseline = exp{(−∞,−11%),−9%,−7%, . . . , 7%, 9%, (11%, ∞)}

I Use beliefs over [−0.10,−0.08) for −9% state, . . .
I Generally use all states excluding (−∞,−11%), (11%, ∞)
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Summary: Risk-Neutral Belief Variation
Average One-Day Movement & Uncertainty Resolution
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Note: Empirical averages Ê[·] calculated across all expiration dates and state pairs.
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Accounting for Market Microstructure Noise

Proposition
Assume that observed π̂∗t,j is measured with error:

π̂∗t,j = π̃∗t,j + εt,j,

where Ẽ[εt,j] = 0, Ẽ[εt,j εt+1,j] = 0, and Ẽ[εt,j π̃∗t,j] = 0. Denoting observed

one-period expected excess movement by Ẽt[m̂∗t,t+1,j − r̂ ∗t,t+1,j], we have

Ẽt[m̂∗t,t+1,j − r̂ ∗t,t+1,j] = Ẽt[m∗t,t+1,j − r∗t,t+1,j] + 2Var(εt,j).

To estimate Var(εt,j), use auxiliary restriction that must hold under RE:

I Subjective forecasts must be unbiased: π̃t,j = Et[π̃T,j]

I Since π̃T,j = 0 or 1, can solve for expected forecast-error variance

I Steps: Conjecture φj −→ translate from π̃∗t,j to π̃t,j −→ calculate expected vs.
realized forecast-error variance −→ assume gap is measurement-error
variance −→ estimate bound −→ continue until conjectured φj = estimated φj
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Empirical Implementation of Theoretical Bound
Lower Bound for SDF Slope
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Note: One-sided 95% CIs use block bootstrap with bandwidth of 45 days, 5,000 draws. Details

I Aggregate across interior states: φ̂ = ∞, CI [3.0, ∞) Formal justification
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Estimation Results: Risk Aversion
Lower Bound for Relative Risk Aversion
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Note: One-sided 95% CIs use block bootstrap with bandwidth of 45 days, 5,000 draws. Details

I Aggregate across interior states: γ̂ = ∞, CI [102, ∞) Formal justification
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Decompositions: Time to Expiration

Risk-Aversion Estimates: Splits by Weeks to Expiration
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Decompositions: Effects of Time Aggregation

Risk-Aversion Estimates: Splits by Sampling Frequency
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I Aggregate monthly: γ̂ = 123, CI [97, ∞)
26



Channels: Reduced-Form Evidence
Regressions for Average Excess Belief Movement by Quarter

(1) (2) (3) (4)

Liquidity and Limits to Arbitrage

Bid-Ask Spread 0.2 -0.2 -0.3* -0.1
(1.3) (-0.7) (-0.4) (-1.0)

Broker-Dealer Leverage -0.1 0.1 -0.0 -0.1
(-0.4) (0.8) (-0.7) (-1.7)

Volatility and Uncertainty

VIX 0.8** 0.9*** 0.6*

(2.3) (3.4) (2.1)

Baker-Bloom-Davis Uncertainty -0.3 0.1 0.2*

(-1.2) (1.5) (2.2)

Returns and Valuation

12-Month S&P Return 0.3** 0.3**

(2.8) (2.6)

Price to 10-Year Earnings Ratio 0.6*** 0.5***

(4.1) (4.1)

Time Trend -0.0*

(-2.2)

R2 0.07 0.34 0.72 0.73

Notes: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. Heteroskedasticity- and autocorrelation-robust t-statistics in parentheses, using
equal-weighted periodogram estimator [Lazarus, Lewis, Stock (2017)]. All variables normalized to unit s.d. except for recession
dummy and time trend. N = 79. 27



Channel: Extrapolation =⇒ Excess Volatility?

Excess Belief Movement
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Note: Gallup data (percent “bullish” less “bearish”) from Greenwood and Shleifer (2014).
Correlation between two series in chart: 0.30.
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Channel: Extrapolation =⇒ Excess Volatility?

Excess Belief Movement and Survey Expectations
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Note: Gallup data (percent “bullish” less “bearish”) from Greenwood and Shleifer (2014).
Correlation between two series in chart: 0.30.
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Robustness: Systematic Mean-Reversion vs. Noise
How real is what we’re finding?

I Consider a simple statistical model for risk-neutral beliefs:

π̃∗t+1,j = µ + ρ(π̃∗t,j − µ) + νt+1

I Setting µ = 1/2, this model yields a prediction that:

E[m∗t,t+1,j − r∗t,t+1,j] = 2(1− ρ)(π̃∗t,j − 1/2)2

=⇒ should see parabola for excess movement vs. prior

Average Daily Excess Risk-Neutral Belief Movement by Starting Belief

Long Horizon: 100 6 T− t 6 110

0 0.2 0.4 0.6 0.8 1

0.00

0.05

0.10

0.15

0.20

Starting Belief: π̃∗t,j

Ê
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Robustness: Conditional Transition Independence
I What if more than 1 state variable determines realization of the SDF (or MU)?

I Then shocks to variables unspanned by asset return could violate CTI
=⇒ φt,j time-varying within contract

Proposition

Recall φt,j ≡ Et[MT/Mt | Rm
T = sj]/Et[MT/Mt | Rm

T = sj+1].

(a) If φt,j is a martingale, then the bound in Proposition 1 still applies.

(b) The bound in Proposition 1 applies to an arbitrarily close approximation
within a neighborhood of φt,j being a martingale: ∀ ε > 0, ∃ δ > 0 s.t. if
|Ẽt[φt+1,j]− φt,j| < δ a.s., then:∣∣∣∣∣Ẽ0[m∗j − r∗j ]− π̃∗

2

0,j

(
1− 1

π̃∗0,j + φ0,j(1− π̃∗0,j)

)∣∣∣∣∣ < ε.

I How good an approximation? For now, simulations: habit formation as in
Campbell & Cochrane (1999)

I Not enough variation in φt,j for simulations to match data, and bound still
holds
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Robustness: Habit-Formation Simulation Results
Estimates of SDF Slope: Estimate vs. True Simulated Average
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Notes: 25,000 simulations of 90-day contracts; s0 drawn from unconditional distribution.
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Final Notes

Summary:
I Examine restrictions on risk-neutral beliefs under RE

I Derive upper bounds for excess movement in risk-neutral beliefs,
corresponding lower bounds on util. curvature needed to rationalize beliefs

I Associated empirical tests: very high curvature required to rationalize beliefs
=⇒ overreaction to information

Possible positive models?
I Extrapolation and/or underweighting of prior relative to news?

I Arrow (1982): “[Evidence from Kahneman and Tversky] typifies very precisely
the excessive reaction to current information which seems to characterize all the
securities and futures markets.”

I Heterogeneous beliefs?

Other: Evidence from other asset classes (FI, FX), applications to real outcomes,
simulations of additional models, . . .
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Appendix



Derivation of Lemma

Consider the conditional expectation of the first term in the movement sum:

Et1 [mt1,t1+1] = Et1 [(πt1+1 − πt1 )
2], where Et[·] ≡ E[· | Ft]

= Et1 [π
2
t1+1]− 2Et1 [πt1+1]πt1 + π2

t1

= Et1 [π
2
t1+1]− 2πt1 πt1 + π2

t1
(martingale prop. of Bayes’ rule)

= Et1 [π
2
t1+1]− π2

t1
+ πt1 −Et1 [πt1+1] (same)

= Et1 [(1− πt1 )πt1 − (1− πt1+1)πt1+1] = Et1 [rt1,t1+1].

Repeating for all periods and using L.I.E. yields the stated result.

Back to main



Two-State Example: Non-Constant Discount Rates

What would using the underlying price [Shiller (1981)] give us?

I Consider extreme DGP: No info revealed until date T, so π∗0 = . . . = π∗T−1

I Price of claim to CT is

Et

[
βT−t U′(CT)

U′(Ct)
CT

]
I Consider deterministic consumption stream C0 6= C1 6= . . .

=⇒ arbitrary price variation as Ct changes, but no variation in expected payoff CT

I Paper discusses cases with time-varying risk premia



Main Results: Implementation

E0i [m
∗
Ti,j − r∗Ti,j] 6 π̃∗

2

0i,Ti,j

(
1− 1

π̃∗0i,Ti,j
+ φi,j(1− π̃∗0i,Ti,j

)

)
︸ ︷︷ ︸

:= mr∗UB,i,j

Issue:

I Only observe one draw m∗Ti,j − r∗Ti,j per contract, rather than E0i [m
∗
Ti,j − r∗Ti,j]

I But
∂2mr∗UB,i,j

∂φ2
i,j

< 0, so Jensen’s inequality (and L.I.E.) give that:

E[m∗Ti,j − r∗Ti,j] 6 E

[
π̃∗

2

0i,Ti,j

(
1− 1

π̃∗0i,Ti,j
+ φi,j(1− π̃∗0i,Ti,j

)

)]

6 E

[
π̃∗

2
0i,Ti,j

(
1− 1

π̃∗0i,Ti,j
+ E[φi,j](1− π̃∗0i,Ti,j

)

)]
,

where expectation is over all expiration dates Ti

I So min. E[φi,j] solving inequality is lower bound of average ratio of SDF
across states =⇒ info on reasonableness of pricing model required under RE

I If no such E[φi,j] exists, then no SDF or risk aversion can explain E[m∗Ti,j − r∗Ti,j]

Back to main



Raw Data: Details and Cleaning

Details of data:
I End-of-day prices for calls and puts, Jan. 1996–Aug. 2015, all traded strikes

=⇒ 685 expiration dates Ti; 4,949 trading dates; 7,385,062 option prices

I Also obtain underlying index price, dividend yield, and risk-free rates from
OptionMetrics, and hand-collect option settlement values from CBOE

Data cleaning:

I Drop any options with: bids of 0, Black-Scholes implied vol. more than
100%, greater than 6 months to maturity [Constantinides, Jackwerth, Savov
(2013)], and any trading date–expiration date combos with fewer than 3
listed prices

I Calculate end-of-day price as average of listed bid and ask prices

I Cleaning for conditional risk-neutral probabilities: to avoid noisy
measurement, only use date–state pairs meeting π∗t,Ti,j + π∗t,Ti,j+1 > 5%

Back to main



Spline Details
I Calculate ∂

∂v qt,Ti (v) numerically following Malz (2014):

1. Transform call and put price schedules for each date–expiration date set
into Black-Scholes implied volatilities

2. Fit clamped cubic splines to interpolate implied vols between strike
prices for both calls and puts

3. Average the calculated call and put implied vols at 1,900 strike prices

4. Invert Black-Scholes implied volatility function to transform resulting
implied vols back into call prices

5. Numerically difference the resulting smoothed call-price schedule

I We only use Black-Scholes implied vols for smoothing and then transform
vols back into prices, so doesn’t require Black-Scholes model to be correct

I “Clamped” cubic spline: Sets slope of implied vol schedule to be zero at
boundary strike-price values, and sets all implied vols below minimum
observed strike price to value at minimum price (likewise for max.)

I This guarantees monotonically decreasing and convex call price schedule,
which maintains no-arbitrage restrictions

I This is an interpolating spline: passes through all observed data (or knot) points



Alternative Smoothing Method

Bliss and Panigirtzoglou (2004) spline:

I Natural spline in implied vol–delta (∆ =
∂q
∂v ) space, weighted by vega (ν =

∂q
∂σ )

I Smoothing spline: Penalizes squared second derivative of spline, with weight
λ = 0.01 relative to deviations from observed data

I Force horizontal implied vol extrapolation by adding pseudo-data three strike
intervals above/below observed strikes with implied vols equal to min./max.
observed values before calculating spline

I Use out-of-the-money options (puts below current forward price, calls above)

In both cases, we set any negative probability values to 0 and renormalize the
distribution accordingly. We calculate Bliss and Panigirtzoglou (2004) values to
check robustness of main results.

Back to main



Estimation and Inference

Estimation:

I Define pricing-kernel ratio as before: φi,j ≡
Et[MTi /Mt | Rm

Ti
=sj]

Et[MTi /Mt | Rm
Ti
=sj+1]

> 1

I Main result: E[m∗Ti,j − r∗Ti,j] 6 E

[
π̃∗

2
0i,Ti,j

(
1− 1

π̃∗0i ,Ti ,j+E[φi,j](1−π̃∗0i ,Ti ,j)

)]
I Denote φj ≡ min

{
E[φi,j]

}
solving inequality

I Sample estimator for each state pair solves moment condition:

1
N

N

∑
i=1

[
m∗Ti,j − r∗Ti,j − π̃∗

2
0i,Ti,j

(
1− 1

π̃∗0i,Ti,j
+ φ̂j(1− π̃∗0i,Ti,j

)

)]
= 0

Inference:

I CIs using block bootstrap: Partition sample into blocks of length B days,
then resample (with replacement) all paths in entire block & re-estimate

I Addresses possible temporal dependence and correlation across state pairs

Back to main



Interpretation: Priors or Updating?

I Recall: Testing null of both correct prior and correct updating

I Are we really finding excess volatility of beliefs, or just miscalibrated priors?

Proposition

Assuming CTI holds for the return-state pair (sj, sj+1), the effects of an incor-
rect physical prior, π̃0,j 6= P0(Rm

T = sj | Rm
T ∈ {sj, sj+1}), are limited as follows:

(i) If π̃∗0,j < P0(Rm
T = sj | Rm

T ∈ {sj, sj+1}), then under Bayesian updating, it

must be the case that Ẽ0[m∗j − r∗j ] 6 max{π̃∗2
0,j , (1− π̃∗0,j)

2}.

(ii) Otherwise, an incorrect prior cannot by itself lead to Ẽ0[m∗j − r∗j ] > π̃∗
2

0,j .

I Thus φ̂j = ∞ =⇒ likely excess volatility, not just bad priors
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